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1 Introduction 

Malwarebyte published on April 27th a new reverse engineering challenge, an executable mixing 

malware behavior with a traditional crackme look. It came in the form of a Windows executable. 

 

Figure 1: Challenge's icon 

This document describes the solving step of the challenge. 

 

2 Lightweight analysis of “mb_crackme_2.exe” 

As we would do with any real malware, we start by performing some basic information gathering on 

the provided executable. Even if the static and dynamic approaches gave us similar conclusions on the 
executable’s nature (see 2.4), the different methods have been described nonetheless in the following 

sections. 

2.1 Basic static information gathering 

Using Exeinfo PE, a maintained successor of the renowned (but outdated) PEiD software, gives us 

some basic information about the binary: 

/ The program is a 32 bits Portable Executable (PE), meant to be run in console (no GUI); 

/ It seems to be compiled from C++ using Microsoft Visual C++ 8; 

/ No obvious sign of packing is detected by the tool. 

 

 

Figure 2 : Output of Exeinfo PE 
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Looking for printable strings in the binary already gives us some hints about the executable’s 

nature: 

$ strings -n 10 mb_crackme_2.exe_ 
[...] 
pyi-windows-manifest-filename 
[...] 
Py_IgnoreEnvironmentFlag 
Failed to get address for Py_IgnoreEnvironmentFlag 
Py_NoSiteFlag 
Failed to get address for Py_NoSiteFlag 
Py_NoUserSiteDirectory 
[...] 
mpyimod01_os_path 
mpyimod02_archive 
mpyimod03_importers 
spyiboot01_bootstrap 
spyi_rth__tkinter 
bCrypto.Cipher._AES.pyd 
bCrypto.Hash._SHA256.pyd 
bCrypto.Random.OSRNG.winrandom.pyd 
bCrypto.Util._counter.pyd 
bMicrosoft.VC90.CRT.manifest 
bPIL._imaging.pyd 
bPIL._imagingtk.pyd 
[...] 
opyi-windows-manifest-filename another.exe.manifest 
[...] 
zout00-PYZ.pyz 
python27.dll 

Many references to Python libraries, PYZ archives and “pyi” substring indicates the use of the 

PyInstaller utility to build a PE executable from a Python script. 
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2.2 Basic dynamic information gathering 

Running the executable (in a sandboxed environment) gives us the following message: 

 

Figure 3 : Malware’s login screen 
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Using Process Monitor, from SysInternals Tools Suite1, allows us to quickly get a glimpse of the 

actions performed by the executable: 

 

Figure 4 : Files operations performed by the malware 

A temporary directory named “_MEI5282” is created under user’s “%temp%” directory, and filled 

with Python-related resources. In particular, “python27.dll” and “*.pyd” libraries are written and 

later loaded by the executable. 

 

Figure 5 : Libraries loaded by the malware 

This behavior is typical of executables generated by PyInstaller. 

  

 
1 https://docs.microsoft.com/en-us/sysinternals/ 
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2.3 Error-handling analysis 

Without tools, it is often possible to quickly get information about a binary’s internals by testing its 
error handling. For example, inserting an EOF (End-Of-File) signal in the terminal (“Ctrl+Z + Return” 

on Windows Command Prompt) makes the program crash, printing the following information: 

 

Figure 6 : Python stack-trace printed after a crash 

This allows us to identify the presence of a Python program embedded inside the executable and 
gives us the name of the main script: another.py. The error message “[$PID] Failed to execute script 

$scriptName” is typical of PyInstaller-produced programs. 

 

2.4 Python files extraction and decompilation 

Every lightweight analysis presented in 2.1, 2.2 and 2.3 points out that the executable has been built 

using PyInstaller. 

The PyInstaller Extractor2 program can be used to extract python-compiled resources from the 

executable. 

$ python pyinstxtractor.py mb_crackme_2.exe 
[*] Processing mb_crackme_2.exe 
[*] Pyinstaller version: 2.1+ 
[*] Python version: 27 
[*] Length of package: 8531014 bytes 
[*] Found 931 files in CArchive 
[*] Beginning extraction...please standby 
[+] Possible entry point: pyiboot01_bootstrap 
[+] Possible entry point: pyi_rth__tkinter 
[+] Possible entry point: another 
[*] Found 440 files in PYZ archive 
[*] Successfully extracted pyinstaller archive: mb_crackme_2.exe 
 
You can now use a python decompiler on the pyc files within the extracted directory 

As previously seen, the most interesting file is “another”, as it should contain the “main” function (cf. 

Figure 6). 

 

 
2 https://0xec.blogspot.fr/2017/11/pyinstaller-extractor-updated-to-v19.html 

https://0xec.blogspot.fr/2017/11/pyinstaller-extractor-updated-to-v19.html
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A quick Internet search3 informs us that in a PYZ archive, the main file is in fact a *.pyc file (Python 

bytecode) whose first 8 bytes, containing its signature, have been removed. Looking the hex 
dump of another *.pyc file of the archive confirms this statement and gives us the correct signature 

for Python 2.7 bytecode files (in purple). 

$ hexdump -C another | head -n 3 
00000000  63 00 00 00 00 00 00 00  00 03 00 00 00 40 00 00  |c............@..| 
00000010  00 73 03 02 00 00 64 00  00 5a 00 00 64 01 00 5a  |.s....d..Z..d..Z| 
00000020  01 00 64 02 00 5a 02 00  64 03 00 64 04 00 6c 03  |..d..Z..d..d..l.| 
 
$ hexdump -C out00-PYZ.pyz_extracted/cmd.pyc | head -n 3 
00000000  03 f3 0d 0a 00 00 00 00  63 00 00 00 00 00 00 00  |.ó......c.......| 
00000010  00 03 00 00 00 40 00 00  00 73 4c 00 00 00 64 00  |.....@...sL...d.| 
00000020  00 5a 00 00 64 01 00 64  02 00 6c 01 00 5a 01 00  |.Z..d..d..l..Z..| 

Restoring the file’s signature produces a correct Python bytecode file. 

$ cat <(printf "\x03\xf3\x0d\x0a\x00\x00\x00\x00") another > another.pyc 
$ file another.pyc 
another.pyc: python 2.7 byte-compiled 

Using the uncompyle6 4  decompilation tool, we can easily recover the original source code of 

another.py. 

$ uncompyle6 another.pyc > another.py 

  

 
3 https://hshrzd.wordpress.com/2018/01/26/solving-a-pyinstaller-compiled-crackme/ from (one of) the chalenge’s author(s), @hasherezade 
4 https://github.com/rocky/python-uncompyle6 

https://hshrzd.wordpress.com/2018/01/26/solving-a-pyinstaller-compiled-crackme/
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3 Stage 1: login 

Looking at the main() function of another.py, we see that the first operations are performed by the 

stage1_login() function. 

def main(): 

    key = stage1_login() 

    if not check_if_next(key): 

        return 

    else: 

        content = decode_and_fetch_url(key) 

        if content is None: 

            print 'Could not fetch the content' 

            return -1 

        decdata = get_encoded_data(content) 

        if not is_valid_payl(decdata): 

            return -3 

        print colorama.Style.BRIGHT + colorama.Fore.CYAN 

        print 'Level #2: Find the secret console...' 

        print colorama.Style.RESET_ALL 

        #load_level2(decdata, len(decdata)) 

        dump_shellcode(decdata, len(decdata)) 

        user32_dll.MessageBoxA(None, 'You did it, level up!', 'Congrats!', 0) 

        try: 

            if decode_pasted() == True: 

                user32_dll.MessageBoxA(None, 'Congratulations! Now save your flag 

and send it to Malwarebytes!', 'You solved it!', 0) 

                return 0 

            user32_dll.MessageBoxA(None, 'See you later!', 'Game over', 0) 

        except: 

            print 'Error decoding the flag' 

 

        return 

Figure 7: main() function 

 

def stage1_login(): 

    show_banner() 

    print colorama.Style.BRIGHT + colorama.Fore.CYAN 

    print 'Level #1: log in to the system!' 

    print colorama.Style.RESET_ALL 

    login = raw_input('login: ') 

    password = getpass.getpass() 

    if not (check_login(login) and check_password(password)): 

        print 'Login failed. Wrong combination username/password' 

        return None 

    else: 

        PIN = raw_input('PIN: ') 

        try: 

            key = get_url_key(int(PIN)) 

        except: 

            print 'Login failed. The PIN is incorrect' 

            return None 

 

        if not check_key(key): 

            print 'Login failed. The PIN is incorrect' 

            return None 

        return key 

Figure 8: stage1_login() function 

Three user inputs are successively checked: the user’s login, password and PIN code. 
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3.1.1 Finding the login 

The check_login() function’s code is completely transparent: 

def check_login(login): 

    if login == 'hackerman': 

        return True 

    return False 

Figure 9: check_login() function 

We now have found the login, let’s search for the password. 

 

Figure 10: Expected login :) 

 

3.1.2 Finding the password 

The check_password() function hashes user’s input using the MD5 hash function, and compares 

the result with an hardcoded string: 

def check_password(password): 

    my_md5 = hashlib.md5(password).hexdigest() 

    if my_md5 == '42f749ade7f9e195bf475f37a44cafcb': 

        return True 

    return False 

Figure 11: check_password() function 

A quick Internet search of this string gives us the corresponding cleartext password: Password123. 

 

Figure 12 : Finding the password on a search engine 
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3.1.3 Finding the PIN code 

The PIN code is read from standard input, converted into an integer (cf. stage1_login() function), 

and passed to the get_url_key() function: 

def get_url_key(my_seed): 

    random.seed(my_seed) 

    key = ‘’ 

    for I in xrange(0, 32): 

        id = random.randint(0, 9) 

        key += str(id) 

 

    return key 

Figure 13: get_url_key() function 

This function derives a pseudo-random 32 digits key from the PIN code, using it as a seed for 
Python’s PRNG. The generated key is then verified using the check_key() function, where its MD5 

sum is checked against another hardcoded value. 

def check_key(key): 

    my_md5 = hashlib.md5(key).hexdigest() 

    if my_md5 == 'fb4b322c518e9f6a52af906e32aee955': 

        return True 

    return False 

Figure 14: check_key() function 

The key space is obviously too large to be brute-forced, as a 32-digits string corresponds to 1032 

(~2106) possible combinations. However, we can brute-force the PIN code, being an integer, using 

the following code: 

from another import get_url_key, check_key 

 

PIN = 0 

while True: 

    key = get_url_key(PIN) 

    if check_key(key): 

        print PIN 

        break 

    PIN += 1 

Figure 15: PIN bruteforcing code 

The solution is obtained in a few milliseconds: 

$ python bruteforcePIN.py 
9667 
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3.1.4 Testing credentials 

Using the credentials found in the previous step completes the first stage of the challenge. 

 

Figure 16: Validating stage 1 

Clicking “Yes” make the executable pause after printing the following message in the console: 

 

Figure 17: Waiting for us to find a “secret console” 

Let’s find that secret console! 
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4 Stage 2: the secret console 

4.1 Payload download and decoding 

Continuing our analysis of the main() function, the next function to be called after credentials 
verification is decode_and_fetch_url(), with the previously calculated 32-digits key given as 

argument: 

def decode_and_fetch_url(key): 

    try: 

        encrypted_url = 

'\xa6\xfa\x8fO\xba\x7f\x9d\xe2c\x81`\xf5\xd5\xf6\x07\x85\xfe[hr\xd6\x80?U\x90\x89)\

xd1\xe9\xf0<\xfe' 

        aes = AESCipher(bytearray(key)) 

        output = aes.decrypt(encrypted_url) 

        full_url = output 

        content = fetch_url(full_url) 

    except: 

        return None 

 

    return content 

Figure 18: decode_and_fetch_url() function 

A URL is decrypted using an AES cipher and the 32-digits key. The resource at this URL is then 

downloaded and its content returned by the function. 

To simply get the decrypted URL, we add some logging instructions to the original code of 

another.py, which can be run independently of mb_crackme_2.exe (given that the required 

dependencies are present on our machine). 

[...] 

        full_url = output 

        print "DEBUG : URL fetched is : %s " % full_url #added from original code 

        content = fetch_url(full_url) 

 [...] 

The result execution is the following: 

login: hackerman 
Password: 
PIN: 9667 
DEBUG : URL fetched is : https://i.imgur.com/dTHXed7.png 
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The decrypted URL hosts the PNG image displayed bellow: 

 

Figure 19: Image downloaded by the executable 

The “malware” then read the Red, Green and Blue components of each image’s pixel, 

interprets them as bytes and constructs a buffer from their concatenation. 

def get_encoded_data(bytes): 

    imo = Image.open(io.BytesIO(bytes)) 

    rawdata = list(imo.getdata()) 

    tsdata = '' 

    for x in rawdata: 

        for z in x: 

            tsdata += chr(z) 

 

    del rawdata 

    return tsdata 

Figure 20: get_encode_data() function 

This technique is sometimes used by real malware to download malicious code without raising 

suspicion of traffic-analysis tools, hiding the real nature of the downloaded resource. 

Using the “Extract data…” function of the Stegsolve tool5 allows to quickly preview the data encoded 

in the image, which appears to be a PE file (and more specifically, a DLL): 

 
5 https://www.wechall.net/forum/show/thread/527/Stegsolve_1.3/page-1 
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Figure 21 : Output of the Stegsolve tool 

The function is_valid_payl() is then used to check whether the decoded payload is correct: 

def is_valid_payl(content): 

    if get_word(content) != 23117: 

        return False 

    next_offset = get_dword(content[60:]) 

    next_hdr = content[next_offset:] 

    if get_dword(next_hdr) != 17744: 

        return False 

    return True 

The 23117 and 17744 constants represent the “MZ” and “PE” magic bytes present in the headers of 

a PE. 

>>> import struct 
>>> struct.pack("<H", 23117) 
'MZ' 
>>> struct.pack("<H", 17744) 
'PE' 

The decoded file is then passed to the load_level2() function, which is a wrapper around 

prepare_stage(). 

def load_level2(rawbytes, bytesread): 

    try: 

        if prepare_stage(rawbytes, bytesread): 

            return True 

    except: 

        return False 

Figure 22: load_level2() function 
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def prepare_stage(content, content_size): 

    with open("dumped_pe.dll", "wb") as f: 

        f.write(content[:content_size]) 

        print "DEBUG : File dumped in dumped_pe.dll" 

    virtual_buf = kernel_dll.VirtualAlloc(0, content_size, 12288, 64) 

    if virtual_buf == 0: 

        return False 

    res = memmove(virtual_buf, content, content_size) 

    if res == 0: 

        return False 

    MR = WINFUNCTYPE(c_uint)(virtual_buf + 2) 

    MR() 

    return True 

Figure 23: prepare_stage() function 

This function starts by allocating enough space to store the downloaded code, using the VirtualAlloc 

API function call. The allocated space is readable, writable and executable, as the provided 

arguments reveal (12288 being equal to “MEM_COMMIT | MEM_RESERVE”, and 64 to 

PAGE_EXECUTE_READWRITE). 

The downloaded code is then written in the allocated space using the memmove function, and 

executed. 

 

To get a clean dump of the downloaded code (once decrypted), we add a piece of code in the 

prepare_stage() function, as follows: 

def prepare_stage(content, content_size): 

    with open("dumped_pe.dll", "wb") as f: 

        f.write(content[:content_size]) 

        print "DEBUG : File dumped in dumped_pe.dll" 

    virtual_buf = kernel_dll.VirtualAlloc(0, content_size, 12288, 64) 

    if virtual_buf == 0: 

        return False 

    res = memmove(virtual_buf, content, content_size) 

    if res == 0: 

        return False 

    MR = WINFUNCTYPE(c_uint)(virtual_buf + 2) 

    MR() 

    return True 

After re-executing the program, we observe that the obtained file is indeed a valid 32 bits Windows 

DLL: 

$ file dumped_pe.dll 
dumped_file.ext: PE32 executable (DLL) (console) Intel 80386, for MS Windows 

Time for us to open our favorite disassembler6! 

 

  

 
6 In my case, IDA 😊 
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4.2 Downloaded DLL’s reverse-engineering 

The list of exported functions being empty (except for the DllEntryPoint function), we start our 

analysis at the entry point of the DLL. 

 

Figure 24: Exports list 

 

4.2.1 Entry point 

Our first goal is to search for the DllMain() function from the entry point. If the reverser is not used 

to analyze Windows DLLs, a simple way to start the analysis would be to open any random non-

stripped 32bit DLL, which (with a little luck) would be compiled with the same compiler (Visual 

C++ ~7.10 here), and which would have a similar CFG structure for the DllEntryPoint function. 

An example of CFG comparisons between the analyzed DLL (left) and another non-stripped 32bit DLL 

(right) is presented below: 

  

Figure 25: DllEntryPoint function in our DLL Figure 26: DllEntryPoint function in another non-

stripped DLL 
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Figure 27: DllMainCTRStartup 

(0x10008579) function in our DLL 

Figure 28: DllMainCTRStartup function in another 

non-stripped DLL 

 

This technique allows us to quickly find the DllMain function in our DLL, here being located at 

0x10001170. 

 

4.2.2 DllMain (0x10001170) 

The function starts by checking if it has been called during the first load of the DLL by a process, 

by comparing the value of the fdwReason argument7 against the DLL_PROCESS_ATTACH constant. 

The DllMain() function then registers two exception handlers using the 

AddVectoredExceptionHandler8 API call. The handlers are named “Handler_0” and “Handler_1” 

in the screenshot below: 

 
7 cf. https://msdn.microsoft.com/en-us/library/windows/desktop/ms682583(v=vs.85).aspx for more info on DLL loading 
8 https://msdn.microsoft.com/en-us/library/windows/desktop/ms679274(v=vs.85).aspx 

https://msdn.microsoft.com/en-us/library/windows/desktop/ms682583(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms679274(v=vs.85).aspx
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Figure 29: DllMain() function 

An exception is then manually raised using the “int 3” interruption instruction, triggering the 

execution of Handler_0. 

 

4.2.3 Interlude: debugging a DLL in IDA Pro 

To make the reverse-engineering of some functions easier, debugging the code to observe functions 

inputs and outputs can be an effective method. 

One simple way to debug a DLL inside IDA is to load the file as usual, then go to “Debugger -

>Process options...” and modify the following value: 

/ Application: 

‒ On a 64 bits version of Windows: 

» “C:\Windows\SysWOW64\rundll32.exe” to debug a 32 bits library 

» “C:\Windows\System32\rundll32.exe” to debug a 64 bits library 

‒ On a 32 bits version of Windows: 

» “C:\Windows\System32\rundll32.exe” to debug a 32 bits library 

» Obviously, you cannot run (therefore debug) a 64 bits library on a 32 bits version of 

Windows 

/ Parameters: 

‒ “PATH_OF_YOUR_DLL”,functionToCall [function parameters if any]9 

 
9 https://support.microsoft.com/en-us/help/164787/info-windows-rundll-and-rundll32-interface 

https://support.microsoft.com/en-us/help/164787/info-windows-rundll-and-rundll32-interface
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Note: The file extension must be “*.dll” for rundll32.exe to accept it. 

 

 

Figure 30: IDA "Process options..." menu 

To test the configuration, just place a breakpoint at the entry point of the DLL: 

 

Figure 31: Placing a breakpoint at entry point 

Run your debugger (F9). If configured correctly, your debugger should break at the DLL entry 

point, allowing you to debug any DLL function 

 

4.2.4 Handler_0 (0x10001260) 

Looking at the Handler_0’s CFG (given below), we see that the function calls two unknown functions 

(0x100092C0 and 0x1000E61D). To quickly identify these functions, let’s debug the DLL, and look at 

the functions inputs/outputs: 
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sub_100092C0 

 

Figure 32: function sub_100092C0() call 

The function seems to take 3 arguments: 

/ A buffer (here named “Value”); 

/ A value (here 0); 

/ The size of the buffer (here 0x104). 

We look at the buffer’s content before and after the function call: 

  
Figure 33: “Value” buffer before function 

sub_100092C0()’s call 
Figure 34: “Value” buffer after function 

sub_100092C0()’s call 

 

The function prototype and its side effects correspond to the memset function. 

 

sub_1000E61D 

 

Figure 35: function sub_1000E61D() call 

The function seems to take 4 arguments: 

/ An integer (here the PID of the process); 

/ A buffer (here named “Value”); 

/ The size of the buffer (here 0x104); 

/ A value (here 0xA, or 10). 

Looking at the provided buffer’s content after the function call, we see that the representation in 

base 10 of the first integer passed in parameter is written in the provided buffer. 
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Figure 36: “Value” buffer after function sub_1000E61D() call 

The function prototype and its side effects correspond to the _itoa_s function10. 

 

Handler_0 whole CFG and pseudo-code 

Here is the graph of the Handler_0 function: 

 

 
10 https://msdn.microsoft.com/fr-fr/library/0we9x30h.aspx 

https://msdn.microsoft.com/fr-fr/library/0we9x30h.aspx
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Figure 37: CFG of function Handler_0() 

This corresponds to the following pseudo code: 

if isloaded(“python.dll”): 

   pid = getpid() 

else: 

   pid = 0 

setEnvironmentVariable(“mb_chall”, str(pid)) 

return EXCEPTION_CONTINUE_SEARCH 

The function checks the presence of the python27.dll library (normally loaded by the main program 

mb_crackme_2.exe) in the process address space, and sets the “mb_chall” environment variable 

consequently.  

This may be seen as an “anti-debug” trick, because running the DLL independently in a debugger 

makes the execution follow a different path. 

 

4.2.5 Handler_1 (0x100011D0) 

The code of this handler is quite self-explanatory, being similar to the previous handler’s code: 
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Figure 38: CFG of function Handler_1() 

Once again, this corresponds to the following pseudo code: 

if getpid() == int(getenv(“mb_chall”): 

   tmp = 6 

else: 

   tmp = 1 

exceptionInfo->Context._Eip += tmp 

return EXCEPTION_CONTINUE_EXECUTION 
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After this handler, execution restarts at the address of original interruption (“int 3”) +1 or 

+6 (as presented in the pseudo-code above), whether performed checks pass or not. 

 

Figure 39: Execution restart location after interruption 

We thus continue the analysis at the not_fail function (0x100010D0). 

 

4.2.6 not_fail (0x100010D0) 

The function only starts a thread and wait for it to terminate. 

 

Figure 40: CFG of not_fail() function 

The created thread executes the MainThread (0x10001110) function, where our analysis continues. 

 

4.2.7 MainThread (0x10001110) 

The function loops and call the EnumWindows11 API every second, which in turn calls the provided 

callback function (EnumWindowsCallback) on every window present on the desktop. 

 
11 https://msdn.microsoft.com/fr-fr/library/windows/desktop/ms633497(v=vs.85).aspx 

https://msdn.microsoft.com/fr-fr/library/windows/desktop/ms633497(v=vs.85).aspx
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Figure 41: CFG of MainThread() function 

 

4.2.8 EnumWindowsCallback function (0x10005750) 

The function, called on each window, uses the SendMessageA 12  API with the WM_GETTEXT 

message to retrieve the window’s title. 

 

Figure 42: SendMessageA() call in MainThread() function 

After being converted to C++ std::string, the substrings “Notepad” and “secret_console” are 

searched in the window’s title. 

 
12 https://msdn.microsoft.com/en-us/library/windows/desktop/ms632627(v=vs.85).aspx 

https://msdn.microsoft.com/en-us/library/windows/desktop/ms632627(v=vs.85).aspx


 

write-up_challenge_malwarebytes.docx  May 15, 2018 | © Wavestone | 25 

 

 

Figure 43: Strings "Notepad" and "secret_console" are searched in window title 

If the substrings are both present, the window’s title is replaced by the hardcoded string 
“Secret Console is waiting for the commands...”, using the SendMessageA API along with the 

WM_SETTEXT message. The window is placed to the foreground, using the ShowWindow API 

call. 

 

Figure 44: Modification of the window title using SendMessageA() 

The PID of the process corresponding to the window is then written in the “malware”’s console, 

and sub-windows of this window are enumerated, using the EnumChildWindows 13 API.The 

function EnumChildWindowsCallback (0x100034C0) is thus called on every sub-window. 

 
13 https://msdn.microsoft.com/fr-fr/library/windows/desktop/ms633494(v=vs.85).aspx 
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Figure 45: EnumChildWindows() function call 

 

4.2.9 EnumChildWindowsCallback function (0x100034C0) 

This function gets the content of the sub-window using the SendMessageA API call: 

 

Figure 46: SendMessageA() call in EnumChildWindowsCallback() function 

The substring “dump_the_key” is then searched in the retrieved content: 

 

Figure 47: String "dump_the_key" is searched in window content 

If this string is found, this function calls a decryption routine decrypt_buffer() (0x100016F0) on 

a buffer (encrypted_buff), using the string “dump_the_key” as argument. 
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Figure 48: Decrypting a hardcoded buffer using "dump_the_key" as the key 

Then, the “malware” loads the actxprxy.dll library into the process memory space. The first 4096 
bytes (i.e. the first memory page) of the library is made writable using the VirtualProtect API call, 

and the decrypted payload is written at this location.  

 

Figure 49: Loading a library and writing the decrypted_buffer at its location 

Since the actxprxy.dll library is not used anywhere in the analyzed DLL after being re-written, it may 

be seen as a covert communication channel between the analyzed DLL and the main program 

mb_crackme_2.exe. 

After this, the function clears every allocated memory and exits. The created thread (see 4.2.6) 

therefore also exits, and the DllEntryPoint function call terminates, giving the control back to the 

main python script. 
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4.3 Triggering the secret console 

As seen in the DLL analysis, to trigger the required conditions, a file named “secret_console – 
Notepad” is opened in a text editor. As such, the window title contains the mentioned 

substrings: 

 

Figure 50: Opening a file named "secret_console_Notepad.txt" on Notepad++ 

As expected, the title of the window is changed to “Secret Console is waiting for the 
commands…” by the malware. Writing “dump_the_key” in the window validates the second 

stage. 

 

Figure 51: Writing "dump_the_key" in the text editor 
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5 Stage 3: the colors 

After validating the previous step, a message is printed on the console, asking the user to “guess a 

color”: 

 

Figure 52: Level 3 message 

 

Figure 53: Level 3 failed guess message 

The three components (R, G and B) of a specific color, whose values each vary between 0 and 255, 

need to be entered to validate this step.  

 

5.1 Understanding the code 

Looking back at the another.py’s main() function code, it seems that the corresponding operations 

are performed inside the decode_pasted() function. 

def main(): 

   [...] 

      load_level2(decdata, len(decdata)) 

      user32_dll.MessageBoxA(None, 'You did it, level up!', 'Congrats!', 0) 

      try: 

         if decode_pasted() == True: 

            user32_dll.MessageBoxA(None, 'Congratulations! Now save your flag and 

send it to Malwarebytes!', 'You solved it!', 0) 

            return 0 

Figure 54: Extract from main() function 
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def decode_pasted(): 

    my_proxy = kernel_dll.GetModuleHandleA('actxprxy.dll') 

    if my_proxy is None or my_proxy == 0: 

        return False 

    else: 

        char_sum = 0 

        arr1 = my_proxy 

        str = '' 

        while True: 

            val = get_char(arr1) 

            if val == '\x00': 

                break 

            char_sum += ord(val) 

            str = str + val 

            arr1 += 1 

 

        print char_sum 

        if char_sum != 52937: 

            return False 

        colors = level3_colors() 

        if colors is None: 

            return False 

        val_arr = zlib.decompress(base64.b64decode(str)) 

        final_arr = dexor_data(val_arr, colors) 

        try: 

            exec final_arr 

        except: 

            print 'Your guess was wrong!' 

            return False 

 

        return True 

 

def dexor_data(data, key): 

    maxlen = len(data) 

    keylen = len(key) 

    decoded = '' 

    for i in range(0, maxlen): 

        val = chr(ord(data[i]) ^ ord(key[i % keylen])) 

        decoded = decoded + val 

 

    return decoded 

Figure 55: decode_pasted() function 

def level3_colors(): 

    colorama.init() 

    print colorama.Style.BRIGHT + colorama.Fore.CYAN 

    print "Level #3: Your flag is almost ready! But before it will be revealed, you 

need to guess it's color (R,G,B)!" 

    print colorama.Style.RESET_ALL 

    color_codes = '' 

    while True: 

        try: 

            val_red = int(raw_input('R: ')) 

            val_green = int(raw_input('G: ')) 

            val_blue = int(raw_input('B: ')) 

            color_codes += chr(val_red) 

            color_codes += chr(val_green) 

            color_codes += chr(val_blue) 

            break 

        except: 

            print 'Invalid color code! Color code must be an integer (0,255)' 

 

    print 'Checking: RGB(%d,%d,%d)' % (val_red, val_green, val_blue) 

    return color_codes 

Figure 56: level3_colors() function 
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According to the decode_pasted() function, the decrypted buffer stored at the start of 

actxprxy.dll’s address space is read and: 

/ base64-decoded; 

/ zlib-decompressed; 

/ XOR’ed against the user-provided colors values; 

/ Executed by the Python exec function. 

To start our cryptanalysis, we modify the decode_pasted() function to dump the val_arr buffer 

before the dexor_data() operation, and rerun another.py, providing all required credentials: 

[...] 

if colors is None: 

   return False 

val_arr = zlib.decompress(base64.b64decode(str)) 

with open("val_arr.bin", "wb") as f: 

   f.write(val_arr) 

   print "val_arr dumped !" 

exit() 

final_arr = dexor_data(val_arr, colors) 

[...] 

 

Figure 57: Dumping the xor'ed array 

 

5.2 Decrypting the val_arr buffer 

Knowing that the buffer is a string passed to the “exec” Python statement after being decrypted, it 

should represent a valid Python source code. 

To find the right key, the naïve solution would be to run a brute-force attack on all the 
possible “(R, G, B)” combinations, and look for printable solutions. This solution would need to 

perform 256^3 = 16’777’216 dexor_data() calls, which is practically feasible but inefficient. 

Instead, we perform 3 independent brute-force attacks on each R, G and B component, therefore 

performing 256 x 3 = 768 dexor_data() calls. The 3 brute-force attacks are performed on different 
“slices” of the val_arr string (of each of stride 3). We then test each combination of potential 

values previously found for each component.  

For example, if our 3 brute-force attacks indicate that: 

/ R can take values 2 and 37,  

/ G can take values 77 and 78, 

/ and B can only take the value 3, 

Then we test the combinations (2,77, 3), (37,77, 3), (2,78, 3) and (37,78, 3). 

  



 

write-up_challenge_malwarebytes.docx  May 15, 2018 | © Wavestone | 32 

 

The following code implements our attack: 

import string 

import itertools 

from colorama import * 

from another import dexor_data 

 

with open("val_arr.bin", "rb") as f: 

    val_arr = f.read() 

 

#lists of possible values for R, G and B 

potential_solutions = [list(), list(), list()] 

for color in range(3): # separate bruteforce on R, G and B 

    for xor_value in range(256): #testing all potential values 

        valid = True 

        for b in val_arr[color::3]: #extracting one every 3 characters, from index 

"color" (i.e. extracting all characters xored by the same "color" value) 

            if chr(ord(b) ^ xor_value) not in string.printable: 

                valid = False 

                break 

        if valid: 

            potential_solutions[color].append(xor_value) 

 

print "Possible values for R, G and B :", potential_solutions 

 

for colors in itertools.product(*potential_solutions): 

    print "Testing ", colors 

    plaintext = dexor_data(val_arr, map(chr, colors)) 

    print repr(plaintext) 

    if not raw_input("Does it seems right ? [Y/n]\n").startswith("n"): 

       print "Executing payload :" 

       exec plaintext 

       break 

Executing this code gives us the solution instantly: 

 

Figure 58: Decrypting the payload 

The final flag appears in the console: 

flag{"Things are not always what they seem; the first appearance deceives many; the 
intelligence of a few perceives what has been carefully hidden." - Phaedrus} 

  



 

write-up_challenge_malwarebytes.docx  May 15, 2018 | © Wavestone | 33 

 

6 Conclusion 

This challenge was very interesting to solve, because apart from being an original crackme, it 

also included various topics that could be found during a real malware analysis. These topics 

included: 

/ DLL-rewriting techniques, here used as a kind of covert communication channel between a DLL 

and its main process; 

/ “Non-obvious” anti-debugging tricks, like checking the presence of a known library in the 

process’ memory space to identify standalone DLL debugging; 

/ Concealed malware downloading, using « harmless » formats (like PNG) to hide an 

executable payload from basic traffic analysis; 

/ PyInstaller-based malware, (yes, sometimes malware writers can be lazy).  

Thanks MalwareByte for this entertaining challenge! 


